Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 92: 180-189, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29101850

RESUMO

B cells play a critical role in immune responses both in physiological and pathological conditions, and microRNAs have been shown to play important roles in regulating B cell proliferation and function. MiR-146a has been shown to modulate T cell immunity, but its function in regulating B cell response remains partially understood. Our previous studies indicated that germinal center (GC) B cells are significantly expanded in miR-146a-overexpressing (TG) mice. In this study, we further characterized the roles of miR-146a in regulating humoral immune responses to specific antigens. We found that the production of IgE antibody were significantly elevated in TG mice, while the antibody affinity maturation of IgM and IgG were similar between TG mice and the normal controls. We further found higher IgE antibody levels in TG B cell culture supernatant than that in normal controls. A global protein expression comparison of B cells from TG mice and the normal controls through TMT proteomic assay showed that 14-3-3σ, a key factor of immunoglobulin class switch DNA recombination (CSR) in B cells, was highly up-regulated in B cells with overexpression of miR-146a, while Smad4, the target of miR-146a, was decreased. Using an asthma model induced by OVA immunization, we further confirmed the increased level of OVA specific IgE antibodies in TG mice. These results demonstrate that miR-146a enhances class switch and secretion of IgE in B cells by upregulating 14-3-3σ expression, and suggest that miR-146a may be a potential target for asthma therapy.


Assuntos
Proteínas 14-3-3/imunologia , Linfócitos B/imunologia , Switching de Imunoglobulina/imunologia , Imunoglobulina E/imunologia , MicroRNAs/imunologia , Regulação para Cima/imunologia , Proteínas 14-3-3/genética , Animais , Asma/genética , Asma/imunologia , Linfócitos B/patologia , Switching de Imunoglobulina/genética , Imunoglobulina E/genética , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Recombinação Genética/imunologia , Regulação para Cima/genética
2.
Autophagy ; 10(10): 1726-37, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126724

RESUMO

Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.


Assuntos
Autofagia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Lisossomos/metabolismo , MicroRNAs/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteólise , Adolescente , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Lisossomos/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteólise/efeitos dos fármacos , Tretinoína/farmacologia
3.
Mol Pharmacol ; 81(4): 578-86, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252650

RESUMO

Camptothecin (CPT) is an effective chemotherapeutic agent for treatment of patients with cancer. The mechanisms underlying CPT-mediated responses in cancer cells are not fully understood. MicroRNA (miRNA) play important roles in tumorigenesis and drug sensitivity. However, the interaction between camptothecin and miRNA has not been previously explored. In this study, we verified that miR-125b was down-regulated in CPT-induced apoptosis in cancer cells and that ectopic expression of miR-125b partially restored cell viability and inhibited cell apoptosis that was induced by CPT. In addition, we demonstrated that CPT induced apoptosis in cancer cells by miR-125b-mediated mitochondrial pathways via targeting to the 3'-untranslated (UTR) regions of Bak1, Mcl1, and p53. A significant increase in Bak1, Mcl1, and p53 protein levels was detected in response to the treatments of CPT. It is noteworthy that the expression levels of Bak1, Mcl1, and p53 increased in a time-dependent manner and negatively correlated with miR-125b expression. It is noteworthy that we revealed that miR-125b directly targeted the 3'UTR regions of multiple genes in a CPT-induced mitochondrial pathway. In addition, most targets of miR-125b were proapoptotic genes, whereas some of the targets were antiapoptotic genes. We hypothesized that miR-125b may mediate the activity of chemotherapeutic agents to induce apoptosis by regulating multiple targets. This is the first report to show that camptothecin induces cancer cell apoptosis via miRNA-mediated mitochondrial pathways. The results suggest that suppression of miR-125b may be a novel approach for the treatment of cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , MicroRNAs/fisiologia , Mitocôndrias/fisiologia , Neoplasias/patologia , Células HeLa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Neoplasias/metabolismo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
4.
Hum Mol Genet ; 20(24): 4903-15, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21926415

RESUMO

Relapse is a major challenge in the successful treatment of childhood acute lymphoblastic leukemia (ALL). Despite intensive research efforts, the mechanisms of ALL relapse are still not fully understood. An understanding of the molecular mechanisms underlying treatment outcome, therapy response and the biology of relapse is required. In this study, we carried out a genome-wide microRNA (miRNA) microarray analysis to determine the miRNA expression profiles and relapse-associated miRNA patterns in a panel of matched diagnosis-relapse or diagnosis-complete remission (CR) childhood ALL samples. A set of miRNAs differentially expressed either in relapsed patients or at diagnosis compared with CR was further validated by quantitative real-time polymerase chain reaction in an independent sample set. Analysis of the predicted functions of target genes based on gene ontology 'biological process' categories revealed that the abnormally expressed miRNAs are associated with oncogenesis, classical multidrug resistance pathways and leukemic stem cell self-renewal and differentiation pathways. Several targets of the miRNAs associated with ALL relapse were experimentally validated, including FOXO3, BMI1 and E2F1. We further investigated the association of these dysregulated miRNAs with clinical outcome and confirmed significant associations for miR-708, miR-223 and miR-27a with individual relapse-free survival. Notably, miR-708 was also found to be associated with the in vivo glucocorticoid therapy response and with disease risk stratification. These miRNAs and their targets might be used to optimize anti-leukemic therapy, and serve as novel targets for development of new countermeasures of leukemia. This fundamental study may also contribute to establish the mechanisms of relapse in other cancers.


Assuntos
Diferenciação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glucocorticoides/uso terapêutico , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais/genética , Adolescente , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Criança , Pré-Escolar , Análise por Conglomerados , Progressão da Doença , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Glucocorticoides/farmacologia , Humanos , Lactente , Masculino , MicroRNAs/metabolismo , Dados de Sequência Molecular , Análise Multivariada , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Modelos de Riscos Proporcionais , Recidiva , Regulação para Cima/efeitos dos fármacos
5.
Mol Cancer ; 10: 108, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21880154

RESUMO

BACKGROUND: Although current chemotherapy regimens have remarkably improved the cure rate of pediatric acute promyelocytic leukemia (APL) over the past decade, more than 20% of patients still die of the disease, and the 5-year cumulative incidence of relapse is 17%. The precise gene pathways that exert critical control over the determination of cell lineage fate during the development of pediatric APL remain unclear. METHODS: In this study, we analyzed miR-125b expression in 169 pediatric acute myelogenous leukemia (AML) samples including 76 APL samples before therapy and 38 APL samples after therapy. The effects of enforced expression of miR-125b were evaluated in leukemic cell and drug-resistant cell lines. RESULTS: miR-125b is highly expressed in pediatric APL compared with other subtypes of AML and is correlated with treatment response, as well as relapse of pediatric APL. Our results further demonstrated that miR-125b could promote leukemic cell proliferation and inhibit cell apoptosis by regulating the expression of tumor suppressor BCL2-antagonist/killer 1 (Bak1). Remarkably, miR-125b was also found to be up-regulated in leukemic drug-resistant cells, and transfection of a miR-125b duplex into AML cells can increase their resistance to therapeutic drugs, CONCLUSIONS: These findings strongly indicate that miR-125b plays an important role in the development of pediatric APL at least partially mediated by repressing BAK1 protein expression and could be a potential therapeutic target for treating pediatric APL failure.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos , Leucemia Promielocítica Aguda/genética , MicroRNAs/metabolismo , Adolescente , Animais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Criança , Pré-Escolar , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Lactente , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Resultado do Tratamento , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
6.
J Biol Chem ; 286(44): 38253-38263, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21903586

RESUMO

MicroRNA-125b (miR-125b), a small noncoding RNA molecule, has been found to be deregulated and functions as an oncogene in many cancers including hematopoietic malignancies. However, the mechanisms accounting for miR-125b dysregulation remain to be elucidated. The present study aims to identify the factors that might contribute to up-regulation of miR-125b in human hematopoietic malignancies and its downstream targets for lineage-specific differentiation. We at first reported that CDX2, a homeobox transcription factor, binds to promoter regions of the miR-125b gene and activates transcriptional regulation of miR-125b in malignant myeloid cells. We further revealed that increasing levels of CDX2 in malignant myeloid cells activate miR-125b expression, which in turn inhibits core binding factor ß (CBFß) translation, thereby counteracting myeloid cell differentiation, at least for granulocytic lineage, and promoting leukemogenesis. Interestingly, we found that this novel pathway including CDX2, miR-125b, and CBFß was mediated by undergoing all-trans-retinoic acid induction. Once differentiation ensues with all-trans-retinoic acid treatment, CDX2 activity decreases, leading to a reduction in miR-125b transcription and up-regulation of CBFß in myeloid cells and in patients. The study provides a new mechanism that contributes to hematopoietic malignancies, which could involve deregulation of miR-125b and its up- and downstream factors. As altered expression of miRNAs has been reported in a wide range of malignancies, delineating the underlying molecular mechanisms of aberrant miRNA expression and characterizing the upstream and downstream factors will help to understand important steps in the pathogenesis of these afflictions.


Assuntos
Subunidade beta de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Neoplasias Hematológicas/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição CDX2 , Diferenciação Celular , Linhagem Celular Tumoral , Células HL-60 , Humanos , Células K562 , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo
7.
J Cell Mol Med ; 15(10): 2164-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070600

RESUMO

Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331-5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331-5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331-5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331-5p and miR-27a.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia/tratamento farmacológico , MicroRNAs/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Células K562 , Masculino , Biossíntese de Proteínas , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...